Files
Terminal.Gui/Tests/UnitTestsParallelizable/Drivers/AnsiResponseParserTests.cs

821 lines
30 KiB
C#

#nullable enable
using System.Diagnostics;
using System.Text;
using Xunit.Abstractions;
namespace UnitTests_Parallelizable.DriverTests;
// BUGBUG: These tests use TInputRecord of `int`, but that's not a realistic type for keyboard input.
public class AnsiResponseParserTests (ITestOutputHelper output)
{
private readonly AnsiResponseParser<int> _parser1 = new ();
private readonly AnsiResponseParser _parser2 = new ();
/// <summary>
/// Used for the T value in batches that are passed to the AnsiResponseParser&lt;int&gt; (parser1)
/// </summary>
private int _tIndex;
[Fact]
public void TestInputProcessing ()
{
string ansiStream = "\u001b[<0;10;20M"
+ // ANSI escape for mouse move at (10, 20)
"Hello"
+ // User types "Hello"
"\u001b[0c"; // Device Attributes response (e.g., terminal identification i.e. DAR)
string? response1 = null;
string? response2 = null;
var i = 0;
// Imagine that we are expecting a DAR
_parser1.ExpectResponse ("c", s => response1 = s, null, false);
_parser2.ExpectResponse ("c", s => response2 = s, null, false);
// First char is Escape which we must consume incase what follows is the DAR
AssertConsumed (ansiStream, ref i); // Esc
for (var c = 0; c < "[<0;10;20".Length; c++)
{
AssertConsumed (ansiStream, ref i);
}
// We see the M terminator
AssertReleased (ansiStream, ref i, "\u001b[<0;10;20M");
// Regular user typing
for (var c = 0; c < "Hello".Length; c++)
{
AssertIgnored (ansiStream, "Hello" [c], ref i);
}
// Now we have entered the actual DAR we should be consuming these
for (var c = 0; c < "\u001b[0".Length; c++)
{
AssertConsumed (ansiStream, ref i);
}
// Consume the terminator 'c' and expect this to call the above event
Assert.Null (response1);
Assert.Null (response1);
AssertConsumed (ansiStream, ref i);
Assert.NotNull (response2);
Assert.Equal ("\u001b[0c", response2);
Assert.NotNull (response2);
Assert.Equal ("\u001b[0c", response2);
}
[Theory]
[InlineData ("\u001b[<0;10;20MHi\u001b[0c", "c", "\u001b[0c", "\u001b[<0;10;20MHi")]
[InlineData ("\u001b[<1;15;25MYou\u001b[1c", "c", "\u001b[1c", "\u001b[<1;15;25MYou")]
[InlineData ("\u001b[0cHi\u001b[0c", "c", "\u001b[0c", "Hi\u001b[0c")]
[InlineData ("\u001b[<0;0;0MHe\u001b[3c", "c", "\u001b[3c", "\u001b[<0;0;0MHe")]
[InlineData ("\u001b[<0;1;2Da\u001b[0c\u001b[1c", "c", "\u001b[0c", "\u001b[<0;1;2Da\u001b[1c")]
[InlineData ("\u001b[1;1M\u001b[3cAn", "c", "\u001b[3c", "\u001b[1;1MAn")]
[InlineData ("hi\u001b[2c\u001b[<5;5;5m", "c", "\u001b[2c", "hi\u001b[<5;5;5m")]
[InlineData ("\u001b[3c\u001b[4c\u001b[<0;0;0MIn", "c", "\u001b[3c", "\u001b[4c\u001b[<0;0;0MIn")]
[InlineData ("\u001b[<1;2;3M\u001b[0c\u001b[<1;2;3M\u001b[2c", "c", "\u001b[0c", "\u001b[<1;2;3M\u001b[<1;2;3M\u001b[2c")]
[InlineData ("\u001b[<0;1;1MHi\u001b[6c\u001b[2c\u001b[<1;0;0MT", "c", "\u001b[6c", "\u001b[<0;1;1MHi\u001b[2c\u001b[<1;0;0MT")]
[InlineData ("Te\u001b[<2;2;2M\u001b[7c", "c", "\u001b[7c", "Te\u001b[<2;2;2M")]
[InlineData ("\u001b[0c\u001b[<0;0;0M\u001b[3c\u001b[0c\u001b[1;0MT", "c", "\u001b[0c", "\u001b[<0;0;0M\u001b[3c\u001b[0c\u001b[1;0MT")]
[InlineData ("\u001b[0;0M\u001b[<0;0;0M\u001b[3cT\u001b[1c", "c", "\u001b[3c", "\u001b[0;0M\u001b[<0;0;0MT\u001b[1c")]
[InlineData ("\u001b[3c\u001b[<0;0;0M\u001b[0c\u001b[<1;1;1MIn\u001b[1c", "c", "\u001b[3c", "\u001b[<0;0;0M\u001b[0c\u001b[<1;1;1MIn\u001b[1c")]
[InlineData ("\u001b[<5;5;5M\u001b[7cEx\u001b[8c", "c", "\u001b[7c", "\u001b[<5;5;5MEx\u001b[8c")]
// Random characters and mixed inputs
[InlineData ("\u001b[<1;1;1MJJ\u001b[9c", "c", "\u001b[9c", "\u001b[<1;1;1MJJ")] // Mixed text
[InlineData ("Be\u001b[0cAf", "c", "\u001b[0c", "BeAf")] // Escape in the middle of the string
[InlineData ("\u001b[<0;0;0M\u001b[2cNot e", "c", "\u001b[2c", "\u001b[<0;0;0MNot e")] // Unexpected sequence followed by text
[InlineData (
"Just te\u001b[<0;0;0M\u001b[3c\u001b[2c\u001b[4c",
"c",
"\u001b[3c",
"Just te\u001b[<0;0;0M\u001b[2c\u001b[4c")] // Multiple unexpected responses
[InlineData (
"\u001b[1;2;3M\u001b[0c\u001b[2;2M\u001b[0;0;0MTe",
"c",
"\u001b[0c",
"\u001b[1;2;3M\u001b[2;2M\u001b[0;0;0MTe")] // Multiple commands with responses
[InlineData ("\u001b[<3;3;3Mabc\u001b[4cde", "c", "\u001b[4c", "\u001b[<3;3;3Mabcde")] // Escape sequences mixed with regular text
// Edge cases
[InlineData ("\u001b[0c\u001b[0c\u001b[0c", "c", "\u001b[0c", "\u001b[0c\u001b[0c")] // Multiple identical responses
[InlineData ("", "c", "", "")] // Empty input
[InlineData ("Normal", "c", "", "Normal")] // No escape sequences
[InlineData ("\u001b[<0;0;0M", "c", "", "\u001b[<0;0;0M")] // Escape sequence only
[InlineData ("\u001b[1;2;3M\u001b[0c", "c", "\u001b[0c", "\u001b[1;2;3M")] // Last response consumed
[InlineData ("Inpu\u001b[0c\u001b[1;0;0M", "c", "\u001b[0c", "Inpu\u001b[1;0;0M")] // Single input followed by escape
[InlineData ("\u001b[2c\u001b[<5;6;7MDa", "c", "\u001b[2c", "\u001b[<5;6;7MDa")] // Multiple escape sequences followed by text
[InlineData ("\u001b[0cHi\u001b[1cGo", "c", "\u001b[0c", "Hi\u001b[1cGo")] // Normal text with multiple escape sequences
[InlineData ("\u001b[<1;1;1MTe", "c", "", "\u001b[<1;1;1MTe")]
// Add more test cases here...
public void TestInputSequences (string ansiStream, string? expectedTerminator, string expectedResponse, string expectedOutput)
{
var swGenBatches = Stopwatch.StartNew ();
var tests = 0;
string [] [] permutations = GetBatchPermutations (ansiStream, 5).ToArray ();
swGenBatches.Stop ();
var swRunTest = Stopwatch.StartNew ();
foreach (string [] batchSet in permutations)
{
_tIndex = 0;
var response1 = string.Empty;
var response2 = string.Empty;
// Register the expected response with the given terminator
_parser1.ExpectResponse (expectedTerminator, s => response1 = s, null, false);
_parser2.ExpectResponse (expectedTerminator, s => response2 = s, null, false);
// Process the input
var actualOutput1 = new StringBuilder ();
var actualOutput2 = new StringBuilder ();
foreach (string batch in batchSet)
{
IEnumerable<Tuple<char, int>> output1 = _parser1.ProcessInput (StringToBatch (batch));
actualOutput1.Append (BatchToString (output1));
string output2 = _parser2.ProcessInput (batch);
actualOutput2.Append (output2);
}
// Assert the final output minus the expected response
Assert.Equal (expectedOutput, actualOutput1.ToString ());
Assert.Equal (expectedResponse, response1);
Assert.Equal (expectedOutput, actualOutput2.ToString ());
Assert.Equal (expectedResponse, response2);
tests++;
}
output.WriteLine ($"Tested {tests} in {swRunTest.ElapsedMilliseconds} ms (gen batches took {swGenBatches.ElapsedMilliseconds} ms)");
}
public static IEnumerable<object? []> TestInputSequencesExact_Cases ()
{
yield return
[
"Esc Only",
null,
new []
{
new StepExpectation ('\u001b', AnsiResponseParserState.ExpectingEscapeSequence, string.Empty)
}
];
yield return
[
"Esc Hi with intermediate",
'c',
new []
{
new StepExpectation ('\u001b', AnsiResponseParserState.ExpectingEscapeSequence, string.Empty),
new StepExpectation (
'H',
AnsiResponseParserState.InResponse,
string.Empty), // H is known terminator and not expected one so here we release both chars
new StepExpectation ('\u001b', AnsiResponseParserState.ExpectingEscapeSequence, "\u001bH"),
new StepExpectation ('[', AnsiResponseParserState.InResponse, string.Empty),
new StepExpectation ('0', AnsiResponseParserState.InResponse, string.Empty),
new StepExpectation (
'c',
AnsiResponseParserState.Normal,
string.Empty,
"\u001b[0c"), // c is expected terminator so here we swallow input and populate expected response
new StepExpectation ('\u001b', AnsiResponseParserState.ExpectingEscapeSequence, string.Empty)
}
];
}
public class StepExpectation ()
{
/// <summary>
/// The input character to feed into the parser at this step of the test
/// </summary>
public char Input { get; }
/// <summary>
/// What should the state of the parser be after the <see cref="Input"/>
/// is fed in.
/// </summary>
public AnsiResponseParserState ExpectedStateAfterOperation { get; }
/// <summary>
/// If this step should release one or more characters, put them here.
/// </summary>
public string ExpectedRelease { get; } = string.Empty;
/// <summary>
/// If this step should result in a completing of detection of ANSI response
/// then put the expected full response sequence here.
/// </summary>
public string ExpectedAnsiResponse { get; } = string.Empty;
public StepExpectation (
char input,
AnsiResponseParserState expectedStateAfterOperation,
string expectedRelease = "",
string expectedAnsiResponse = ""
) : this ()
{
Input = input;
ExpectedStateAfterOperation = expectedStateAfterOperation;
ExpectedRelease = expectedRelease;
ExpectedAnsiResponse = expectedAnsiResponse;
}
}
[MemberData (nameof (TestInputSequencesExact_Cases))]
[Theory]
public void TestInputSequencesExact (string caseName, char? terminator, IEnumerable<StepExpectation> expectedStates)
{
output.WriteLine ("Running test case:" + caseName);
var parser = new AnsiResponseParser ();
string? response = null;
if (terminator.HasValue)
{
parser.ExpectResponse (terminator.Value.ToString (), s => response = s, null, false);
}
var step = 0;
foreach (StepExpectation state in expectedStates)
{
step++;
// If we expect the response to be detected at this step
if (!string.IsNullOrWhiteSpace (state.ExpectedAnsiResponse))
{
// Then before passing input it should be null
Assert.Null (response);
}
string actual = parser.ProcessInput (state.Input.ToString ());
Assert.Equal (state.ExpectedRelease, actual);
Assert.Equal (state.ExpectedStateAfterOperation, parser.State);
// If we expect the response to be detected at this step
if (!string.IsNullOrWhiteSpace (state.ExpectedAnsiResponse))
{
// And after passing input it shuld be the expected value
Assert.Equal (state.ExpectedAnsiResponse, response);
}
output.WriteLine ($"Step {step} passed");
}
}
[Fact]
public void ReleasesEscapeAfterTimeout ()
{
var input = "\u001b";
var i = 0;
// Esc on its own looks like it might be an esc sequence so should be consumed
AssertConsumed (input, ref i);
// We should know when the state changed
Assert.Equal (AnsiResponseParserState.ExpectingEscapeSequence, _parser1.State);
Assert.Equal (AnsiResponseParserState.ExpectingEscapeSequence, _parser2.State);
Assert.Equal (DateTime.Now.Date, _parser1.StateChangedAt.Date);
Assert.Equal (DateTime.Now.Date, _parser2.StateChangedAt.Date);
AssertManualReleaseIs (input);
}
[Fact]
public void TwoEscapesInARow ()
{
// Example user presses Esc key then a DAR comes in
var input = "\u001b\u001b";
var i = 0;
// First Esc gets grabbed
AssertConsumed (input, ref i);
// Upon getting the second Esc we should release the first
AssertReleased (input, ref i, "\u001b", 0);
// Assume 50ms or something has passed, lets force release as no new content
// It should be the second escape that gets released (i.e. index 1)
AssertManualReleaseIs ("\u001b", 1);
}
[Fact]
public void TestLateResponses ()
{
var p = new AnsiResponseParser ();
string? responseA = null;
string? responseB = null;
p.ExpectResponse ("z", r => responseA = r, null, false);
// Some time goes by without us seeing a response
p.StopExpecting ("z", false);
// Send our new request
p.ExpectResponse ("z", r => responseB = r, null, false);
// Because we gave up on getting A, we should expect the response to be to our new request
Assert.Empty (p.ProcessInput ("\u001b[<1;2z"));
Assert.Null (responseA);
Assert.Equal ("\u001b[<1;2z", responseB);
// Oh looks like we got one late after all - swallow it
Assert.Empty (p.ProcessInput ("\u001b[0000z"));
// Do not expect late responses to be populated back to your variable
Assert.Null (responseA);
Assert.Equal ("\u001b[<1;2z", responseB);
// We now have no outstanding requests (late or otherwise) so new ansi codes should just fall through
Assert.Equal ("\u001b[111z", p.ProcessInput ("\u001b[111z"));
}
[Fact]
public void TestPersistentResponses ()
{
var p = new AnsiResponseParser ();
var m = 0;
var M = 1;
p.ExpectResponse ("m", _ => m++, null, true);
p.ExpectResponse ("M", _ => M++, null, true);
// Act - Feed input strings containing ANSI sequences
p.ProcessInput ("\u001b[<0;10;10m"); // Should match and increment `m`
p.ProcessInput ("\u001b[<0;20;20m"); // Should match and increment `m`
p.ProcessInput ("\u001b[<0;30;30M"); // Should match and increment `M`
p.ProcessInput ("\u001b[<0;40;40M"); // Should match and increment `M`
p.ProcessInput ("\u001b[<0;50;50M"); // Should match and increment `M`
// Assert - Verify that counters reflect the expected counts of each terminator
Assert.Equal (2, m); // Expected two `m` responses
Assert.Equal (4, M); // Expected three `M` responses plus the initial value of 1
}
[Fact]
public void TestPersistentResponses_WithMetadata ()
{
AnsiResponseParser<int> p = new ();
// ReSharper disable once NotAccessedVariable
var m = 0;
List<Tuple<char, int>> result = new ();
p.ExpectResponseT (
"m",
r =>
{
result = r.ToList ();
m++;
},
null,
true);
// Act - Feed input strings containing ANSI sequences
p.ProcessInput (StringToBatch ("\u001b[<0;10;10m")); // Should match and increment `m`
// Prepare expected result:
List<Tuple<char, int>> expected = new()
{
Tuple.Create ('\u001b', 0), // Escape character
Tuple.Create ('[', 1),
Tuple.Create ('<', 2),
Tuple.Create ('0', 3),
Tuple.Create (';', 4),
Tuple.Create ('1', 5),
Tuple.Create ('0', 6),
Tuple.Create (';', 7),
Tuple.Create ('1', 8),
Tuple.Create ('0', 9),
Tuple.Create ('m', 10)
};
Assert.Equal (expected.Count, result.Count); // Ensure the count is as expected
Assert.True (expected.SequenceEqual (result), "The result does not match the expected output."); // Check the actual content
}
[Fact]
public void ShouldSwallowUnknownResponses_WhenDelegateSaysSo ()
{
// Swallow all unknown escape codes
_parser1.UnexpectedResponseHandler = _ => true;
_parser2.UnknownResponseHandler = _ => true;
AssertReleased (
"Just te\u001b[<0;0;0M\u001b[3c\u001b[2c\u001b[4cst",
"Just test",
0,
1,
2,
3,
4,
5,
6,
28,
29);
}
[Fact]
public void UnknownResponses_ParameterShouldMatch ()
{
// Track unknown responses passed to the UnexpectedResponseHandler
List<string> unknownResponses = new ();
// Set up the UnexpectedResponseHandler to log each unknown response
_parser1.UnexpectedResponseHandler = r1 =>
{
unknownResponses.Add (BatchToString (r1));
return true; // Return true to swallow unknown responses
};
_parser2.UnknownResponseHandler = r2 =>
{
// parsers should be agreeing on what these responses are!
Assert.Equal (unknownResponses.Last (), r2);
return true; // Return true to swallow unknown responses
};
// Input with known and unknown responses
AssertReleased (
"Just te\u001b[<0;0;0M\u001b[3c\u001b[2c\u001b[4cst",
"Just test");
// Expected unknown responses (ANSI sequences that are unknown)
List<string> expectedUnknownResponses = new()
{
"\u001b[<0;0;0M",
"\u001b[3c",
"\u001b[2c",
"\u001b[4c"
};
// Assert that the UnexpectedResponseHandler was called with the correct unknown responses
Assert.Equal (expectedUnknownResponses.Count, unknownResponses.Count);
Assert.Equal (expectedUnknownResponses, unknownResponses);
}
[Fact]
public void ParserDetectsMouse ()
{
// ANSI escape sequence for mouse down (using a generic format example)
const string MOUSE_DOWN = "\u001B[<0;12;32M";
// ANSI escape sequence for Device Attribute Response (e.g., Terminal identifying itself)
const string DEVICE_ATTRIBUTE_RESPONSE = "\u001B[?1;2c";
// ANSI escape sequence for mouse up (using a generic format example)
const string MOUSE_UP = "\u001B[<0;25;50m";
var parser = new AnsiResponseParser ();
parser.HandleMouse = true;
string? foundDar = null;
List<MouseEventArgs> mouseEventArgs = new ();
parser.Mouse += (s, e) => mouseEventArgs.Add (e);
parser.ExpectResponse ("c", dar => foundDar = dar, null, false);
string released = parser.ProcessInput ("a" + MOUSE_DOWN + "asdf" + DEVICE_ATTRIBUTE_RESPONSE + "bbcc" + MOUSE_UP + "sss");
Assert.Equal ("aasdfbbccsss", released);
Assert.Equal (2, mouseEventArgs.Count);
Assert.NotNull (foundDar);
Assert.Equal (DEVICE_ATTRIBUTE_RESPONSE, foundDar);
Assert.True (mouseEventArgs [0].IsPressed);
// Mouse positions in ANSI are 1 based so actual Terminal.Gui Screen positions are x-1,y-1
Assert.Equal (11, mouseEventArgs [0].Position.X);
Assert.Equal (31, mouseEventArgs [0].Position.Y);
Assert.True (mouseEventArgs [1].IsReleased);
Assert.Equal (24, mouseEventArgs [1].Position.X);
Assert.Equal (49, mouseEventArgs [1].Position.Y);
}
[Fact]
public void ParserDetectsKeyboard ()
{
// ANSI escape sequence for cursor left
const string LEFT = "\u001b[D";
// ANSI escape sequence for Device Attribute Response (e.g., Terminal identifying itself)
const string DEVICE_ATTRIBUTE_RESPONSE = "\u001B[?1;2c";
// ANSI escape sequence for cursor up (while shift held down)
const string SHIFT_UP = "\u001b[1;2A";
var parser = new AnsiResponseParser ();
parser.HandleKeyboard = true;
string? foundDar = null;
List<Key> keys = new ();
parser.Keyboard += (s, e) => keys.Add (e);
parser.ExpectResponse ("c", dar => foundDar = dar, null, false);
string released = parser.ProcessInput ("a" + LEFT + "asdf" + DEVICE_ATTRIBUTE_RESPONSE + "bbcc" + SHIFT_UP + "sss");
Assert.Equal ("aasdfbbccsss", released);
Assert.Equal (2, keys.Count);
Assert.NotNull (foundDar);
Assert.Equal (DEVICE_ATTRIBUTE_RESPONSE, foundDar);
Assert.Equal (Key.CursorLeft, keys [0]);
Assert.Equal (Key.CursorUp.WithShift, keys [1]);
}
public static IEnumerable<object []> ParserDetects_FunctionKeys_Cases ()
{
// These are VT100 escape codes for F1-4
yield return
[
"\u001bOP",
Key.F1
];
yield return
[
"\u001bOQ",
Key.F2
];
yield return
[
"\u001bOR",
Key.F3
];
yield return
[
"\u001bOS",
Key.F4
];
// These are also F keys
yield return
[
"\u001b[11~",
Key.F1
];
yield return
[
"\u001b[12~",
Key.F2
];
yield return
[
"\u001b[13~",
Key.F3
];
yield return
[
"\u001b[14~",
Key.F4
];
yield return
[
"\u001b[15~",
Key.F5
];
yield return
[
"\u001b[17~",
Key.F6
];
yield return
[
"\u001b[18~",
Key.F7
];
yield return
[
"\u001b[19~",
Key.F8
];
yield return
[
"\u001b[20~",
Key.F9
];
yield return
[
"\u001b[21~",
Key.F10
];
yield return
[
"\u001b[23~",
Key.F11
];
yield return
[
"\u001b[24~",
Key.F12
];
}
[MemberData (nameof (ParserDetects_FunctionKeys_Cases))]
[Theory]
public void ParserDetects_FunctionKeys (string input, Key expectedKey)
{
var parser = new AnsiResponseParser ();
parser.HandleKeyboard = true;
List<Key> keys = new ();
parser.Keyboard += (s, e) => keys.Add (e);
foreach (char ch in input)
{
parser.ProcessInput (new (ch, 1));
}
Key k = Assert.Single (keys);
Assert.Equal (k, expectedKey);
}
private Tuple<char, int> [] StringToBatch (string batch) { return batch.Select (k => Tuple.Create (k, _tIndex++)).ToArray (); }
public static IEnumerable<string []> GetBatchPermutations (string input, int maxDepth = 3)
{
// Call the recursive method to generate batches with an initial depth of 0
return GenerateBatches (input, 0, maxDepth, 0);
}
private static IEnumerable<string []> GenerateBatches (string input, int start, int maxDepth, int currentDepth)
{
// If we have reached the maximum recursion depth, return no results
if (currentDepth >= maxDepth)
{
yield break; // No more batches can be generated at this depth
}
// If we have reached the end of the string, return an empty list
if (start >= input.Length)
{
yield return new string [0];
yield break;
}
// Iterate over the input string to create batches
for (int i = start + 1; i <= input.Length; i++)
{
// Take a batch from 'start' to 'i'
string batch = input.Substring (start, i - start);
// Recursively get batches from the remaining substring, increasing the depth
foreach (string [] remainingBatches in GenerateBatches (input, i, maxDepth, currentDepth + 1))
{
// Combine the current batch with the remaining batches
var result = new string [1 + remainingBatches.Length];
result [0] = batch;
Array.Copy (remainingBatches, 0, result, 1, remainingBatches.Length);
yield return result;
}
}
}
private void AssertIgnored (string ansiStream, char expected, ref int i)
{
char c2 = ansiStream [i];
Tuple<char, int> [] c1 = NextChar (ansiStream, ref i);
// Parser does not grab this key (i.e. driver can continue with regular operations)
Assert.Equal (c1, _parser1.ProcessInput (c1));
Assert.Equal (expected, c1.Single ().Item1);
Assert.Equal (c2, _parser2.ProcessInput (c2.ToString ()).Single ());
Assert.Equal (expected, c2);
}
private void AssertConsumed (string ansiStream, ref int i)
{
// Parser grabs this key
char c2 = ansiStream [i];
Tuple<char, int> [] c1 = NextChar (ansiStream, ref i);
Assert.Empty (_parser1.ProcessInput (c1));
Assert.Empty (_parser2.ProcessInput (c2.ToString ()));
}
/// <summary>
/// Overload that fully exhausts <paramref name="ansiStream"/> and asserts
/// that the final released content across whole processing is <paramref name="expectedRelease"/>
/// </summary>
/// <param name="ansiStream"></param>
/// <param name="expectedRelease"></param>
/// <param name="expectedTValues"></param>
private void AssertReleased (string ansiStream, string expectedRelease, params int [] expectedTValues)
{
var sb = new StringBuilder ();
List<int> tValues = new ();
var i = 0;
while (i < ansiStream.Length)
{
char c2 = ansiStream [i];
Tuple<char, int> [] c1 = NextChar (ansiStream, ref i);
Tuple<char, int> [] released1 = _parser1.ProcessInput (c1).ToArray ();
tValues.AddRange (released1.Select (kv => kv.Item2));
string released2 = _parser2.ProcessInput (c2.ToString ());
// Both parsers should have same chars so release chars consistently with each other
Assert.Equal (BatchToString (released1), released2);
sb.Append (released2);
}
Assert.Equal (expectedRelease, sb.ToString ());
if (expectedTValues.Length > 0)
{
Assert.True (expectedTValues.SequenceEqual (tValues));
}
}
/// <summary>
/// Asserts that <paramref name="i"/> index of <see cref="ansiStream"/> when consumed will release
/// <paramref name="expectedRelease"/>. Results in implicit increment of <paramref name="i"/>.
/// <remarks>Note that this does NOT iteratively consume all the stream, only 1 char at <paramref name="i"/></remarks>
/// </summary>
/// <param name="ansiStream"></param>
/// <param name="i"></param>
/// <param name="expectedRelease"></param>
/// <param name="expectedTValues"></param>
private void AssertReleased (string ansiStream, ref int i, string expectedRelease, params int [] expectedTValues)
{
char c2 = ansiStream [i];
Tuple<char, int> [] c1 = NextChar (ansiStream, ref i);
// Parser realizes it has grabbed content that does not belong to an outstanding request
// Parser returns false to indicate to continue
Tuple<char, int> [] released1 = _parser1.ProcessInput (c1).ToArray ();
Assert.Equal (expectedRelease, BatchToString (released1));
if (expectedTValues.Length > 0)
{
Assert.True (expectedTValues.SequenceEqual (released1.Select (kv => kv.Item2)));
}
Assert.Equal (expectedRelease, _parser2.ProcessInput (c2.ToString ()));
}
private string BatchToString (IEnumerable<Tuple<char, int>> processInput) { return new (processInput.Select (a => a.Item1).ToArray ()); }
private Tuple<char, int> [] NextChar (string ansiStream, ref int i) { return StringToBatch (ansiStream [i++].ToString ()); }
private void AssertManualReleaseIs (string expectedRelease, params int [] expectedTValues)
{
// Consumer is responsible for determining this based on e.g. after 50ms
Tuple<char, int> [] released1 = _parser1.Release ().ToArray ();
Assert.Equal (expectedRelease, BatchToString (released1));
if (expectedTValues.Length > 0)
{
Assert.True (expectedTValues.SequenceEqual (released1.Select (kv => kv.Item2)));
}
Assert.Equal (expectedRelease, _parser2.Release ());
Assert.Equal (AnsiResponseParserState.Normal, _parser1.State);
Assert.Equal (AnsiResponseParserState.Normal, _parser2.State);
}
}