mirror of
https://github.com/gui-cs/Terminal.Gui.git
synced 2025-12-26 15:57:56 +01:00
* Initial plan * Delete AnsiColorNameResolver and MultiStandardColorNameResolver, add legacy 16-color names to StandardColor Co-authored-by: tig <585482+tig@users.noreply.github.com> * Refactor and enhance tests for Color, Region, and Lines Refactored `Color` struct by removing unused methods and simplifying logic. Updated namespaces for better organization. Enhanced test coverage for `Color`, `Region`, and `LineCanvas` with new test cases, parameterized tests, and edge case handling. Added `StraightLineExtensionsTests`, `StraightLineTests`, and `RegionClassTests` to validate behavior under various scenarios. Improved `MergeRectangles` stability and addressed crash patterns. Removed legacy features and unused code. Enhanced documentation and optimized performance in key methods. * Improve Color struct and StandardColors functionality Enhanced the Color struct to fully support the alpha channel for rendering intent while maintaining semantic color identity. Updated TryNameColor to ignore alpha when matching colors, ensuring transparency does not affect color resolution. Expanded XML documentation to clarify alpha channel usage and future alpha blending support. Improved drawing documentation to explain the lifecycle, deferred rendering, and color support, including 24-bit true color and legacy 16-color compatibility. Added a new section on transparency and its role in rendering. Revised StandardColors implementation to use modern C# features and ensure consistent ARGB mapping. Added comprehensive tests for StandardColors and Color, covering alpha handling, color parsing, thread safety, and aliased color resolution. Removed outdated tests relying on legacy behavior. Enhanced code readability, maintainability, and test coverage to ensure correctness and backward compatibility. * Code cleanup * Code cleanup * Fix warnings. Code cleanup * Add comprehensive unit tests for ColorStrings class Introduced a new test class `ColorStringsTests` under the `DrawingTests.ColorTests` namespace to validate the functionality of the `ColorStrings` class. Key changes include: - Added tests for `GetColorName` to verify behavior for standard and non-standard colors, ignoring alpha channels, and handling known colors. - Added tests for `GetStandardColorNames` to ensure the method returns a non-empty, alphabetically sorted collection containing all `StandardColor` enum values. - Implemented tests for `TryParseStandardColorName` to validate case-insensitive parsing, hex color support, handling invalid input, and `ReadOnlySpan<char>` compatibility. - Added tests for `TryParseNamedColor` to verify parsing of named and hex colors, handling of aliases, and `ReadOnlySpan<char>` support. - Added round-trip tests to ensure consistency between `GetColorName`, `TryParseNamedColor`, `GetStandardColorNames`, and `TryParseStandardColorName`. These tests ensure robust validation of color parsing and naming functionality. --------- Co-authored-by: copilot-swe-agent[bot] <198982749+Copilot@users.noreply.github.com> Co-authored-by: tig <585482+tig@users.noreply.github.com> Co-authored-by: Tig <tig@users.noreply.github.com>
264 lines
10 KiB
C#
264 lines
10 KiB
C#
namespace DrawingTests.RegionTests;
|
|
|
|
using Xunit;
|
|
|
|
public class SubtractRectangleTests
|
|
{
|
|
[Fact]
|
|
public void SubtractRectangle_NoOverlap_ReturnsOriginalRectangle ()
|
|
{
|
|
// Arrange: Non-overlapping rectangles
|
|
Rectangle original = new (0, 0, 10, 10);
|
|
Rectangle subtract = new (15, 15, 5, 5);
|
|
|
|
// Act: Subtract non-overlapping rectangle
|
|
var result = Region.SubtractRectangle (original, subtract).ToList ();
|
|
|
|
// Assert: Original rectangle unchanged
|
|
Assert.Single (result);
|
|
Assert.Equal (new Rectangle (0, 0, 10, 10), result [0]);
|
|
}
|
|
|
|
[Fact]
|
|
public void SubtractRectangle_CompleteOverlap_ReturnsEmpty ()
|
|
{
|
|
// Arrange: Subtract rectangle completely overlaps original
|
|
Rectangle original = new (0, 0, 5, 5);
|
|
Rectangle subtract = new (0, 0, 5, 5);
|
|
|
|
// Act: Subtract overlapping rectangle
|
|
var result = Region.SubtractRectangle (original, subtract).ToList ();
|
|
|
|
// Assert: No rectangles returned (empty result)
|
|
Assert.Empty (result);
|
|
}
|
|
|
|
[Fact]
|
|
public void SubtractRectangle_PartialOverlap_TopAndBottom ()
|
|
{
|
|
// Arrange: Original rectangle with subtract overlapping top and bottom
|
|
Rectangle original = new (0, 0, 10, 10);
|
|
Rectangle subtract = new (0, 4, 10, 2); // Overlaps y=4 to y=5
|
|
|
|
// Act: Subtract overlapping rectangle
|
|
var result = Region.SubtractRectangle (original, subtract).ToList ();
|
|
|
|
// Assert: Expect top (0,0,10,4) and bottom (0,6,10,4)
|
|
Assert.Equal (2, result.Count);
|
|
Assert.Contains (new Rectangle (0, 0, 10, 4), result); // Top part
|
|
Assert.Contains (new Rectangle (0, 6, 10, 4), result); // Bottom part
|
|
}
|
|
|
|
[Fact]
|
|
public void SubtractRectangle_PartialOverlap_LeftAndRight ()
|
|
{
|
|
// Arrange: Original rectangle with subtract overlapping left and right
|
|
Rectangle original = new (0, 0, 10, 10);
|
|
Rectangle subtract = new (4, 0, 2, 10); // Overlaps x=4 to x=5
|
|
|
|
// Act: Subtract overlapping rectangle
|
|
var result = Region.SubtractRectangle (original, subtract).ToList ();
|
|
|
|
// Assert: Expect left (0,0,4,10) and right (6,0,4,10)
|
|
Assert.Equal (2, result.Count);
|
|
Assert.Contains (new Rectangle (0, 0, 4, 10), result); // Left part
|
|
Assert.Contains (new Rectangle (6, 0, 4, 10), result); // Right part
|
|
}
|
|
|
|
|
|
[Fact]
|
|
public void SubtractRectangle_EmptyOriginal_ReturnsEmpty ()
|
|
{
|
|
// Arrange: Empty original rectangle
|
|
Rectangle original = Rectangle.Empty;
|
|
Rectangle subtract = new (0, 0, 5, 5);
|
|
|
|
// Act: Subtract from empty rectangle
|
|
var result = Region.SubtractRectangle (original, subtract).ToList ();
|
|
|
|
// Assert: No rectangles returned (empty result)
|
|
Assert.Empty (result);
|
|
}
|
|
|
|
[Fact]
|
|
public void SubtractRectangle_EmptySubtract_ReturnsOriginal ()
|
|
{
|
|
// Arrange: Empty subtract rectangle
|
|
Rectangle original = new (0, 0, 5, 5);
|
|
Rectangle subtract = Rectangle.Empty;
|
|
|
|
// Act: Subtract empty rectangle
|
|
var result = Region.SubtractRectangle (original, subtract).ToList ();
|
|
|
|
// Assert: Original rectangle unchanged
|
|
Assert.Single (result);
|
|
Assert.Equal (new Rectangle (0, 0, 5, 5), result [0]);
|
|
}
|
|
|
|
|
|
[Fact]
|
|
public void SubtractRectangle_ZeroWidthOrHeight_HandlesCorrectly ()
|
|
{
|
|
// Arrange: Rectangle with zero width or height
|
|
Rectangle original = new (0, 0, 5, 5);
|
|
Rectangle subtract = new (0, 0, 0, 5); // Zero width
|
|
|
|
// Act: Subtract zero-width rectangle
|
|
var result = Region.SubtractRectangle (original, subtract).ToList ();
|
|
|
|
// Assert: Original rectangle unchanged
|
|
Assert.Single (result);
|
|
Assert.Equal (new Rectangle (0, 0, 5, 5), result [0]);
|
|
}
|
|
|
|
[Fact]
|
|
public void SubtractRectangle_NegativeCoordinates_HandlesCorrectly ()
|
|
{
|
|
// Arrange:
|
|
// Original rectangle: (-5,-5) with width 10 and height 10.
|
|
// Subtract rectangle: (-3,-3) with width 2 and height 2.
|
|
Rectangle original = new (-5, -5, 10, 10);
|
|
Rectangle subtract = new (-3, -3, 2, 2);
|
|
|
|
// Act:
|
|
var results = Region.SubtractRectangle (original, subtract).ToList ();
|
|
|
|
// Expected fragments based on our algorithm:
|
|
// Top: (-5,-5,10,2)
|
|
// Bottom: (-5,-1,10,6)
|
|
// Left: (-5,-3,2,2)
|
|
// Right: (-1,-3,6,2)
|
|
var expectedTop = new Rectangle (-5, -5, 10, 2);
|
|
var expectedBottom = new Rectangle (-5, -1, 10, 6);
|
|
var expectedLeft = new Rectangle (-5, -3, 2, 2);
|
|
var expectedRight = new Rectangle (-1, -3, 6, 2);
|
|
|
|
// Assert:
|
|
Assert.Contains (expectedTop, results);
|
|
Assert.Contains (expectedBottom, results);
|
|
Assert.Contains (expectedLeft, results);
|
|
Assert.Contains (expectedRight, results);
|
|
Assert.Equal (4, results.Count);
|
|
}
|
|
|
|
[Fact]
|
|
public void SubtractRectangle_EdgeOverlap_TopLeftCorner ()
|
|
{
|
|
// Arrange: Subtract overlaps only the top-left corner.
|
|
// Original: (0,0,5,5); Subtract: (0,0,1,1)
|
|
Rectangle original = new (0, 0, 5, 5);
|
|
Rectangle subtract = new (0, 0, 1, 1);
|
|
|
|
// Act:
|
|
var result = Region.SubtractRectangle (original, subtract).ToList ();
|
|
|
|
// The algorithm produces two fragments:
|
|
// 1. Bottom: (0,1,5,4)
|
|
// 2. Right: (1,0,4,1)
|
|
Assert.Equal (2, result.Count);
|
|
Assert.Contains (new Rectangle (0, 1, 5, 4), result);
|
|
Assert.Contains (new Rectangle (1, 0, 4, 1), result);
|
|
}
|
|
|
|
// Updated L-shaped test: The algorithm produces 6 fragments, not 5.
|
|
[Fact]
|
|
public void SubtractRectangle_LShapedSubtract_MultipleFragments ()
|
|
{
|
|
// Arrange:
|
|
// Original: (0,0,6,6)
|
|
// subtract1: (2,2,2,1) creates a horizontal gap.
|
|
// subtract2: (2,3,1,1) removes an additional piece from the bottom fragment.
|
|
Rectangle original = new (0, 0, 6, 6);
|
|
Rectangle subtract1 = new (2, 2, 2, 1);
|
|
Rectangle subtract2 = new (2, 3, 1, 1);
|
|
|
|
// Act:
|
|
var intermediateResult = Region.SubtractRectangle (original, subtract1).ToList ();
|
|
var finalResult = intermediateResult.SelectMany (r => Region.SubtractRectangle (r, subtract2)).ToList ();
|
|
|
|
// Explanation:
|
|
// After subtracting subtract1, we expect these 4 fragments:
|
|
// - Top: (0,0,6,2)
|
|
// - Bottom: (0,3,6,3)
|
|
// - Left: (0,2,2,1)
|
|
// - Right: (4,2,2,1)
|
|
// Then subtracting subtract2 from the bottom fragment (0,3,6,3) produces 3 fragments:
|
|
// - Bottom part: (0,4,6,2)
|
|
// - Left part: (0,3,2,1)
|
|
// - Right part: (3,3,3,1)
|
|
// Total fragments = 1 (top) + 3 (modified bottom) + 1 (left) + 1 (right) = 6.
|
|
Assert.Equal (6, finalResult.Count);
|
|
Assert.Contains (new Rectangle (0, 0, 6, 2), finalResult); // Top fragment remains unchanged.
|
|
Assert.Contains (new Rectangle (0, 4, 6, 2), finalResult); // Bottom part from modified bottom.
|
|
Assert.Contains (new Rectangle (0, 3, 2, 1), finalResult); // Left part from modified bottom.
|
|
Assert.Contains (new Rectangle (3, 3, 3, 1), finalResult); // Right part from modified bottom.
|
|
Assert.Contains (new Rectangle (0, 2, 2, 1), finalResult); // Left fragment from first subtraction.
|
|
Assert.Contains (new Rectangle (4, 2, 2, 1), finalResult); // Right fragment from first subtraction.
|
|
}
|
|
|
|
// Additional focused tests for L-shaped subtraction scenarios:
|
|
|
|
[Fact]
|
|
public void SubtractRectangle_LShapedSubtract_HorizontalThenVertical ()
|
|
{
|
|
// Arrange:
|
|
// First, subtract a horizontal band.
|
|
Rectangle original = new (0, 0, 10, 10);
|
|
Rectangle subtractHorizontal = new (0, 4, 10, 2);
|
|
var horizontalResult = Region.SubtractRectangle (original, subtractHorizontal).ToList ();
|
|
// Expect two fragments: top (0,0,10,4) and bottom (0,6,10,4).
|
|
Assert.Equal (2, horizontalResult.Count);
|
|
Assert.Contains (new Rectangle (0, 0, 10, 4), horizontalResult);
|
|
Assert.Contains (new Rectangle (0, 6, 10, 4), horizontalResult);
|
|
|
|
// Act:
|
|
// Now, subtract a vertical piece from the top fragment.
|
|
Rectangle subtractVertical = new (3, 0, 2, 4);
|
|
var finalResult = Region.SubtractRectangle (horizontalResult [0], subtractVertical).ToList ();
|
|
|
|
// Assert:
|
|
// The subtraction yields two fragments:
|
|
// Left fragment: (0,0,3,4)
|
|
// Right fragment: (5,0,5,4)
|
|
Assert.Equal (2, finalResult.Count);
|
|
Assert.Contains (new Rectangle (0, 0, 3, 4), finalResult);
|
|
Assert.Contains (new Rectangle (5, 0, 5, 4), finalResult);
|
|
}
|
|
|
|
[Fact]
|
|
public void SubtractRectangle_LShapedSubtract_VerticalThenHorizontal ()
|
|
{
|
|
// Arrange:
|
|
// First, subtract a vertical band.
|
|
// Original: (0,0,10,10)
|
|
// Vertical subtract: (4,0,2,10) produces two fragments:
|
|
// Left: (0,0,4,10) and Right: (6,0,4,10)
|
|
Rectangle original = new (0, 0, 10, 10);
|
|
Rectangle subtractVertical = new (4, 0, 2, 10);
|
|
var verticalResult = Region.SubtractRectangle (original, subtractVertical).ToList ();
|
|
Assert.Equal (2, verticalResult.Count);
|
|
Assert.Contains (new Rectangle (0, 0, 4, 10), verticalResult);
|
|
Assert.Contains (new Rectangle (6, 0, 4, 10), verticalResult);
|
|
|
|
// Act:
|
|
// Now, subtract a horizontal piece from the left fragment.
|
|
// Horizontal subtract: (0,3,4,2)
|
|
// from the left fragment (0,0,4,10)
|
|
// Let's determine the expected fragments:
|
|
// 1. Top band: since original.Top (0) < subtract.Top (3), we get:
|
|
// (0,0,4, 3) -- height = subtract.Top - original.Top = 3.
|
|
// 2. Bottom band: since original.Bottom (10) > subtract.Bottom (5), we get:
|
|
// (0,5,4, 5) -- height = original.Bottom - subtract.Bottom = 5.
|
|
// No left or right fragments are produced because subtractHorizontal spans the full width.
|
|
// Total fragments: 2.
|
|
Rectangle subtractHorizontal = new (0, 3, 4, 2);
|
|
var finalResult = Region.SubtractRectangle (verticalResult [0], subtractHorizontal).ToList ();
|
|
|
|
// Assert:
|
|
// Expecting two fragments: (0,0,4,3) and (0,5,4,5).
|
|
Assert.Equal (2, finalResult.Count);
|
|
Assert.Contains (new Rectangle (0, 0, 4, 3), finalResult);
|
|
Assert.Contains (new Rectangle (0, 5, 4, 5), finalResult);
|
|
}
|
|
|
|
} |